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be approximately the same as that given by Eq. (12).
Also the introduction of the usual subtraction constant
to correct the threshold behavior is not physically
acceptable because the subtraction constant may
contribute a force different from that of Eq. (12). If we
were to treat the formally subtracted dispersion relation
with corrected threshold behavior, the dynamics would
be meaningful only were we to include a short-range
force corresponding to V~,3r(s), because the contribu-
tions from the subtraction constant may be smaller
than those coming from the dynamical short-range
force Vg, ~ (s). On the other hand, if the Regge param-
eters (19c) turn out to be the correct ones, it would be

necessary to introduce either a p' Regge pole with very
large reduced residue function near s=o, or unknown

parameters such as COD poles. In conclusion, with the
present phenomenological determination of the p and
p' Regge poles, we can at least say that there is some

possibility that the Frye-%arnock conjecture is actually

satisfied and that we can eliminate those unknown

parameters used to satisfy the threshold behavior.
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Corrections due to the exchange of the resonances lying on the leading crossed-channel Regge trajectory
are calculated for a linearly rising Regge trajectory in a single-channel, single-trajectory model. The correc-
tions are small, and the equations force no restriction on the slope or intercept of the trajectory. The integral
equations for the Regge parameters are derived, and detailed numerical results for the p trajectory are
given. A method for determining the slope of the trajectory is proposed.

I. INTRODUCTION
' ~OR several years there has been increasing interest

in applying dispersion relations for the Regge
parameters to bootstrap calculations as an alternative
to the more usual approximations based on the 1V/D

method. We wish to report here some new develop-

ments in this general direction. '
The basic approach consists of deriving approximate

expressions for the imaginary parts of the Regge
parameters from unitarity and from a "potential, "and

inserting these into the dispersion relations. This leads

to integral equations for the trajectory which are rather

complicated, but which can be solved by computers.
The method, at various levels of sophistication, has

been extensively tested in potential theory, and is

capable of yielding trajectories which are in quite

good agreement with the exact ones. ' The extension to
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and P. Kaus, ibid. 166, 1633 (1968).
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Geld theory and to bootstrap calculations is, however,
considerably more diKcult.

Basically, there are four diGerences between potential
theory and a full-relativistic bootstrap model which
cause problems. These are (i) the difhculty of construct-
ing a credible field-theoretic "potential, "which can be
used in the same way as a potential in the Schrodinger
equation; (ii) the fact that trajectories apparently
rise—perhaps linearly —in the real world, while they
approach negative integers in potential theory; (iii)
the fact that more trajectories are likely to be numeric-

ally important in calculating a Geld-theoretic amplitude
than in potential theory; and (iv) the perennial problem
of many channels and multiparticle intermediate states
in the relativistic case, which is not present in potential
theory.

It is to the solution of the first of these difhculties
that we primarily address ourselves in this paper.
First, let us elaborate a bit on the other three.

The mechanics of incorporating rising trajectories

into the general framework of dispersion relations for

the Regge parameters has been understood by Mandel-

stam and by Epstein and Raus. ' However, their

prescription, which includes using a twice-subtracted

dispersion relation for the Regge trajectory, introduces

two subtraction constants, and hence two new param-
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eters, into the system of equations. (These parameters
are essentially the slope and intercept of the trajectory. )
Fur thcrmorc, they find (and this ls tl llc with olll
improvements as well) that most of the physically
interesting consequences of the calculations are con-
trolled by these two parameters, and only fine details
in the behavior of the Regge parameters come from
the rest of the mathematics, It is, therefore of crucial
importance to a successful bootstrap calculation to
determine the subtraction constants. Mandelstam'
attempts to do this by using the "6nite-energy sum
rules. "' However, the values of the parameters ob-
tained in this way depend rather sensitively on both the
cuto6' in the sum rules and on. the value of the mo-
mentum transfer at which the sum rule is evaluated. 4

This approach, therefore, amounts to little else than
replacing the two unknown parameters with two other
also unknown parameters.

It seems likely to us (and this wiH be explored in
more detail in Sec. IV) that the values of the subtrac-
tion constants have their origin in the last two di%-
culties on our list—namely, lower trajectories and more
channels —so that it is appropriate to turn next t.o a
dlscussloli of tlicsc.

The introduction of additional trajectories into the
problem poses no difhculties of principle. However,
practical calculations, even in potential theory and
with the simplest approximation to the unitarity
relation, become prohibitively complicated with more
than two trajectories. ' It is possible that families of
parallel trajectories can be handled, and perhaps this
is worthy of further study, but it is unclear whether
such a picture of the trajectories has much to do with
nature. Essentially the same dismal picture applies to
the introduction of large numbers of additional channels.
Numbers of two-body channels can be handled in
principle, but practice is another matter, and contri-
butions from multiparticle states cannot. even be
written down as yet. There is the possibility of including
a phenoxnenological description of other channels
through an inelasticity factor, ' but this introduces
unknown parameters and defeats any attempt at a
complete bootstrap calculation. It seems clear that the
most promising way to proceed is to find approxima-
tions in which other features, such as analyticity,
crossing, and unitarity, are handled crudely enough that
the resulting simplicity of the equations permits a
many-channel, many-trajectory calculation. If this can
be done, then it may be possible to calculate the two
subtraction constants for a given trajectory, and insert
those values into the kind of approximation method
that we are describing here, in order to calculate

3R. Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19,
402 (&W7).

4 B.R. Desai, Y. Shan, and P. Kaus (to be published).
C. I. Pearson, Ph.D. thesis, University of california at

Riverside, 1965 (unpublished).
s gee Epstein end Kans (Ref. I).

(hopefully with some reliability) the detailed behavior
of the trajectory.

I et us now leave the depressing subject of what we
cannot handle and return to a discussion of dBIIiculty

(i): how to introduce an analog of the potential in the
Schrodinger equation. It is evident that this is to be
done through the use of crossing symmetry, which we
use to calculate the partial-wave amplitude in the
direct (s) channel, as explained in Sec. II. The partial-
wave amplitude is written by the Froissart-Gribov
formula as a product of the imaginary part of the
amplitude and a Q function, integrated from s=ss to
s= ~, where s is the cosine of the s-channel scattering
angle. Ke then make the assumption that the amplitude
can be described, for s less than some value E, in terms
of narrow-width resonances in the crossed channel, and,
for s greater than X, in terms of the s-channel Regge
poles. This assumption is in the same spirit as the
6nite-energy sum rules, but because of the presence of
the Q function in the integrand, our "sum rule" is much
more convergent than the finite-energy sum rules
themselves. ~ The resulting representation of the partial-
wave amphtude, together with the fact that the
partial-wave amplitude is known through unitarity at
1=0,*, where 0. is some Regge pole, aBows us to express
the imaginary part of the trajectory and its residue
in terms of the resonances in the crossed channel.
Finally, if we assume that there is only one crossed-
channel trajectory and that the crossed-channel reso-
nances al1. lie on it, then we obtain a closed system of
cquatlons.

Our explicit calculation and results mill be for the p
trajectory, and we keep the xw channel only. Thus we
assume that the x7r amplitude is controlled asymp-
totically by the p trajectory, that all low-energy reso-
nances in the xx system are due to states lying on the p
trajectory, and that the amount of any of these states
leaking out into other channels is small.

These are evidently drastic assumptions. %e there-
fore prefer to look on our calculation more as a test
of how IIIlpol'tall't lnlpl ovclllcll'ts 111 diff lculty (I) al c
as compared to improvements in difficulties (ii)-(iv),
rather than as a reliable calculation of the properties of
the p trajectory.

Our results show that the p trajectory produced by
our integral equations is still almost a straight line,
and therefore still largely controlled by thc two sub-
traction constants which we must specify as input
parameters. Solutions do in fact exist for all values of
these parameters, so they are not restricted in any
way, and therefore are not predicted by the theory.
Agreement with experimentally known properties of
thc p trajcctoly ls goodq but this ls bccausc thc cxpcll-
mental trajectory is also basically straight, and agree-
ment is achieved only by adjusting the two input
parameters.

~ I'". Arb@b and R. Q. pig, nsky, Phys. Rev. Igl, 178' (I968).
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The primary conclusion is, theref ore, that our more
reliable way of putting in crossing —that is, of con-
structing a "potential" —is not a particularly important
improvement, and any of the cruder and simpler
methods, such as the "universal-trajectory approxi-
mation, is just as good. This, incidentally, is in

complete contrast to the situation in potential theory,
where improvements to the universal approximation
are crucial to obtaining good agreement with the exact
trajectories. ' As a consequence, we believe that the
most important direction for future work is to attempt
to simplify treatments of analyticity, unitarity, and

(perhaps) crossing, to the point where many channels
and many trajectories can be successfully handled in

practice.

((s—so)
=g'ex

I

ds

„(s'—s) (s'—so)

Models for G(s) will locate the zeros of p(s) at the poles

of G(s) and determine the asymptotic properties

fP( ).
(c) The residue function p(s) is closely linked to
Imn(s) by unitarity. We define a function F(s) by the

equations

and

p(s) = Immix(s)
F(s),

p(s) (3)

p(s) =C(s—s )/sj'"

II. EQUATIONS FOR TRAJECTORY FUNCTIONS

The integral equations for the Regge parameters are
derived using the analyticity properties derived from
potential theory' for a(s) and the residue p(s), and

unitarity, which relates a(s) and P(s). The assumptions
and equations for the single rising trajectory are as
follows:
(a) The trajectory function. n(s) is real analytic with

only a right-hand cut, and does not rise faster than
linearly in s. It satis6es the dispersion relation

n(s) =A+8(s so)—
s—sp ds

Imn(s') . (1)
vr „(s'—s) (s'—so)

Here A and 8 are the (arbitrary) subtraction param-

eters, so is the subtraction point, and s~ is the s-channel

threshold.

(b) The residue p(s) is a real analytic function when

multiplied by the threshold. factor (s—s&) &'&. We
deane a function b(s), which has no zeros and goes

asymptotically to a constant, so that we can write a
dispersion relation for lnb(s),

b(s) —=G(s)p(s) (s—s~)

1= —
2ip (s)a(n*(s),s) .

For trajectories with small Imn(s), n*(s) is expected

to be closer to u(s) than to any other singularity in the
partial-wave amplitude. The leading term in a(l, s)
near l=a* is

(l, ) =P ( )/I3-. ( )1,
which, when substituted into Eq. (5), gives

(6)

P (s)= Lima (s)]/p(s)

This is the so-called "universal" approximation and

corresponds to F(s)=1. More generally, this suggests

Eq. (3) as a useful form for P(s). Better forms for

a(l,s) than Eq. (6) lead to functions F(s) different

from unity.
In potential theory, where trajectories do not rise

but retreat to the left-hand l plane, Imn(s) does not

remain small and Eq. (7) is not a good approximation.
Better representations for a(l, s) than Eq. (6), such as

the Khuri, modified Khuri, Cheng, and modified

Cheng" representations for a(l, s) provide different

functions F(s), which lead progressively to more

accurate relationships between the residue p(s) and the

trajectory n(s). In particular, forcing the correct

asymptotic behavior for a(l,s) by smoothly subtracting

out the partial-wave Born term proved to be the most

important correction. It would seem reasonable after

the potential-theory experience to expect that the most

important contribution to F(s) would come from the

exchange of trajectories.
We now calculate these corrections to F(s) in a

model for the p trajectory that includes only the m m.

channel. The odd-signature partial-wave amplitude is

given by

1
a (l,s) =— ds, Q&(s,)LA (s,s.)—A (s, —s.)j„,(8)

where
l A(s,s,)],, stands for the discontinuity in s, of

the amplitude A (s,z,), and where s,= $1+2t/(s —4m ')J,
so= L1+2to/(s —4m 2)j, and to=4m 2.

Our model for A(s, t) is the following: For t)s, A(s, t)

is given by the leading Regge pole in the s channel; For

t(s, A (s,t) is given by the leading Regge pole in the t

channel, i.e., the resonances lying on the p trajectory.

This model for A (s,t) is completely determined by the p

where F(s) is calculated from unitarity. Elastic uni-

tarity for the partial-wave amplitude is

a(l,s)—a*(P,s) = 2ip(s)a(l, s)a*(P,s) . (4)

Taking the residue of the pole in a*(P,s) at l=n*,
we obtain
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Regge parameters,

~-(.) (s.)—&-(.) (—s.)
A (s,t) =s [2n(s)+ Q9{s)

2 sinn o.(s)
I' (~)(s~) I—' (o( s—~)=~[2+(t)+1jP(t), t(s. (9)

2 sins n(t)

The integral in Eq. (8) now splits into two parts: one
from so to E (f&s), and the other from 1V to ~ (t&s),
where X(s)=1+2s/(s —4' ') =3. It should not matter
much whether S is chosen at exactly this value or not,
since lt ls just thc value of 8 whcx'c wc switch from onc
approximation, appropriate for t&&s, to another, ap-
propriate for t&&s. Nevertheless, for reasons of sym-
metry between the s and t channels, we have generally
preferred the choice X=3.

The discontinuity of A (s,s,) for )'&s is

[&(,')-&(, -')3..= [2.()+13fl()~-. ('), («)
and can readily be integrated with Q)(s,).' The dis-
continuity for f&s is much more complicated. In this
region we assume that the amplitude can be represented
as a sum of rcsonanccs lying on thc p trajectory, and
let the widths shrink to zero. This gives, for f&s,

P(&-)
[A(s,s,)—A(s, —s,)]„=P 2@[2)s+11

A 066 ~'(~-)2$2
xP„Il.+ II Ib(t—t„). (11)

3 —4m 'i ( s—4m.'i
The sum on n is over the resonances lying on the p

trajectory. Thus, n = 1, 3, 5, , and a()!„)=n. We now
substitute Eqs. (10) and (11) into (8) and find that

P(~)
a(l, s) =Ii(l,s)+ Im(l, s),

l—n(s)
where

P(t ) 2s ~) 2
Ii(l,s)= g 2(2m+1) E„1+

n'(i„) ~„—4~.2i Es—4~.2)

24
XQI 1+

I (13 )
s—4m.')

and

1,(fp) = -(alt -1) I P.(.)(ar)Q i(iV)

-Q(&)~-. WIj. {13b)

Finally, we substitute this model for a(l,s) into the
unitarity relation, Kq. {5):

Ima(s) Imn(s)
P(s) = F(s)= [1+2'�(s)I(a*(s),s)]/

p(s) p(s)
I ( *(),~) (14)

II$gh@' Tfcssc8NtkN$8/ FNfgcgsoNS (BateInan ManUscript
Project), edited by A. Erd8yi. (Mcoraw-Hill Book Co., Nevy
York, 1953), Vol. I, p. 1'N. At any /, the integral is to be con-
sidered in the continuation from /&Reo. .

It is clear that I2{n*(s),s) plays the role of better
representations here, like the Khuri or Cheng represen-
tations, 9 and Ii{n*(s),s) plays the role of their "modifi-
cation. "'' Actually, in contrast to potential theory,
wc 6nd that I~ is numerically too small to play a really
significant role in modifying the rising trajectory (see
Sec. III).

The universal approximation is recovered by setting
X=1, since then the whole amplitude is represented by
just the s-channel Regge pole. [For %=1, Ii——0,
I2=1, and F(s)=1.]

To completely determine the system of equations in
terms of the trajectory, we must specify G(s) in Kq. (2).
The trajectory which rises linearly for positive s, falls
linearly for negative s. Since the Mandelstam sym-
metry demands that the residue vanish whenever

n(s) is a negative half-integer smaller than —~i, we
choose

G(s) =I'{n(s)+as)e". (15)

Substituting Kq. (3) into Eq. (2), we have

Imn(s)
b(s) -+ I'(A+Bs+ ,'). -

p(s)

&& exp[cs —(8+Bs) 1n (s—s,)1-+const. (1/)

For Imn(s) vanishing no faster than a power, Eq. (17)
implies that

c=J3—8 lnB. (18)

The usual scale of energy so in the Regge formula
(s/so)~('& is naturally given by the slope of the trajec-
tory: so——1/B. If Imn(s) decays exponentially, then (:
is an arbitrary parameter which is smaller than that
given by Eq, (18).We do not investigate exponentially
falling Imn, since the corrections from F(s) would be
even smaller than those which we calculate using Eq.
(18). The power with which Imu(s) decays is s '. A
higher-power behavior, such as s', can be forced, but
then we must introduce another pole into G(s). The
corresponding zero in P(s) is a new "indeterminacy
point, "and is at a value of s which is arbitrary, as far
as we know. %e have not investigated this possibility
either,

9¹N. Khuri, Phys. Rev. 130, 429 (1963);H. Cheng, i'. 144,
j237 (1966).

We assume Imn(s) vanishes asymptotically, and we

must decide whether it vanishes like a power of s or
exponentially with s as s ~0(). If we require that b(s)
in Kq. (2) go to a constant as s —+(c, the constant c in

Eq. (15) controls the asymptotic behavior of Iinn(s).
From Eq. (1), the real part of n(s) behaves like

a(s) -+ J+Bs. .
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pro. 1. Ren(s) and Imn(s).
Solution of Kqs. (19) and (20)
corresponding to the p trajectory.
The subtraction point is so=0. The
other parameters are A=0.543,
8=0.84 BeV ', and g'=0.20. The
dashed curve is the solution for
Imo. (s) in the universal approxi-
mation, Eq. (7), with the same
parameters. Both solutions for
Ren(s) are nearly identical. The
point g at Rex=3 and s"~=1.660
BeV corresponds to the possible
Regge recurrence of the p.

Finally, we substitute Eqs. (1) and (3) into Eq. (2)
and Obt81n

where

S—Sg

+4 (')+4 (') I, (20)
s —sg

XI Ima(s') ln

F(s)—= I
F(s) I

e'&1 &'

1s g1ve11 by Eq. (14), and

G(s) —= I G(s) I

e'""
is given by Eq. (15).

Summing up, Eqs. (19)and (20) result from assuming

that a(s) and P(s) (s—s&)
&'& are real-analytic functions

.with only a right-hand cut and that the trajectory
rises linearly. %e&~have made the following approxi-
mations. In the neighborhood of /= e, the partial-wave
amplitude a(l,s) is forced', to obey elastic unitarity. (No
inelastic channels are explicitly included. ) The ampli-

tude A (s,t) is approximated by a single Regge trajectory
in the s channel for II&s and the same trajectory of
resonances in the I, channel for s& t. The narrow-width-

resonances approxlmatlon ls used for the t-channel

trajectory to calculate the discontinuity in s,. %e have

also used the option of letting Ima(s) ~ s ' as s —+ee,

since all other options imply more arbitrary parameters,

Rea(s) =A+ (s—se)

1 ds
XI 8+—P Ima(s')

I (19)
sr „(s'—s) (s'—se) )

p(s) (s—s1)"
Ima(s) =g'

IG(s)F (s) I

eo d I

Xexp (s—se) Bin(s—s,)+—P „(S'—S) (s'—Se)

In Sec. III we see that the "potential" coming from

exchanging a single trajectory in a single channel is
too weak to force or explain the slope of the trajectory.

III. NUMERICAL RESULTS

Equations (19) and (20), together with Eqs. (14)
and (15), form a closed set of integral equations, which

cRn bc solved by ltclation 1n terms 0'f thc thrcc param-
eters 3, 8, and g~. For a given set of 3, 8, and. 82, wc

start the iteration by putting Imo, =0 and by calculating
Rea from Eq. (19). Then we obtain F(s) from Kqs.
(13) and (14) and G(s) from Kq. (15). The new Ima
can now be calculated from Eq. (20) and the iteration
starts over again.

Before presenting the details of the numerical solu-

tions, we discuss how large the deviations from the
unlvcrsal applox1QlRtlon Rrc cxpcctcd to bc. Wc sho%'

that F(s), defined by Eqs. (13) and (14), differs from 1

by a term of order Imo. when evaluated using the
solutions a and P of t'he universal approximation. Since
Ima is small in the universal approximation, F(s) is of

order 1. Thus, unless there is an unexpected instability
because of their nonlinearity or complexity, the solu-

tions to Eqs. (19) and (20) should not differ quali-

tatively from the corresponding old ones. 6 Since for a
reasonable range of A, 8, and g' the oM solutions give

good phenomenological 6ts to all the known con-

straints of the p trajectory, vie can conclude two things:

(a) The solutions to Eqs. (19) and (20) will give a good
phenomenological p trajectory; and (b) we shall not be
able to accomplish R bootstrap calculation since the
modihcation does not impose any restriction on the
parameters A, 8, and g'. The reason that F(s) stays
close to 1 depends crucially on the fact that Imo. is
small and ImP=O for the old solutions, ' which give a

p meson with an acceptable width.
'0 See Ref. 8, p. 129, Eq. (26), and p. 13'I, Eq. (44).
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0.25

0.20

FIG. 2. Reb(s) and Irnb(s) Th. e
reduced residue b(s) is defined in
Eqs. (2) and (14) in terms of the
solution of Eqs. (19) and (20).
The parameters so, A, J3, and g'
are the same as in Fig. 1. The
dashed curves are the results of
the universal approximation, Eq.
(7). The "notches" in Imb(s)
result from the notches in F(s).
(See Fig. 3.)
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Put l=n*(s) in Eq. (19) for II and Is. For small Imn,
we expand Ii and I2 in powers of Imn, using appropriate
expansion formulas for PI& and QI".Is It is easy to see
that ReII is of order Rep or Imp Imn (whichever is
larger), ImII of order ReP Imn or ImP, Rels of order 1
and Imls of order Imn. Now Eq. (13) can be written
as a power series of Imn, starting from the universal
approximation ReP = (Imn)/p and ImP =0.We conclude
LF(s)1 to be of order 1 and P&(s) of order Imn.

Typical solutions are shown in some detail in Figs.
1—3. In Fig. 1 we plot Reo, and Ima as functions of s
and compare with the corresponding solution of the
universal approximation. ' We see that there is no
significant difference in the two cases. The reduced
residue function is shown in Fig. 2 and also compared to
the corresponding old solution. In Fig. 3 we plot

E(s) and ps(s) as functions of s. The function
F(s) does not deviate very much from unity.
In Fig. 4 some of the main properties of the solutions

are represented as functions of the parameters 8 and
g'. The parameter A is adjusted so that all solutions
give a p meson with mass m, =770 MeV. The figure
shows contours of constant width I', intercept n(0)
=n(s=O) and n'(0) =dn/dsL, s, intercept n(s)=0, and
gs where n(s) =3.

IV. EXTENSIONS, IMPROVEMENTS,
AND CONCLUSIONS

Our purpose has been to calculate the corrections to a
linearly rising Regge trajectory due to the exchange of
the resonances lying on the leading crossed-channel
trajectory. These corrections are large in potential

I.!5- 0.4

FIG. 3. LP(s) 1
and pz(s). P(s)

is dined by Eqs. (13) and (14).
The scale of pg(s) is in radians.
Note that LF(s)

L
does not difFer

much from 1. The "notches" in
P(s) result from. 'the fact that the
number of resonances included in
II increases with s.

I.IO-

1.05-

s {BeV)

0.2

0.0

—-0.2



SHU- YUAN CHU et al.

I

I
I
I
I
I
I

I
I
I

I
I
I

ICl
I II

O
I

I
I
I

I

I
I

F 4. Properties of solutaons corre-
ondin to p trajectory as unc

justed in h g

the subtract~on
is identica—=n s=o} since

=0. Also shown are con-point is so ——. so

m~, in MeV. I" is related to e
parameters by

Imn(Mp') =n'(Mp')3f pI"p.

0.2l—

I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I

0.90-2 0.88
B(Bev)

{22)

0.I 9
0.84

con ecture is that at any value of swa of stating the conj an value of sries as mptotically approach w y con' an. va, lue oft eory wh here the trajectori y'
e inte ers, but in the rising- j nce o e

t e r d with crossing symmetry, e
h traight Thus the puniversal trajectory, , ter t e

"orce" which ceps isover, including the exchange
sin c-G ann )

— ol mode o
existence of man dithe subtraction para

lt indicate that rising-trajector
rate crossing symmet y

f all these oos s.'ll duce trajectorieswe have will sti pro uaccura, tely than we
earl straig t ines.

eth channe wit
that are very near y

em remaining is ow o c

Imu~ s
21

important problem
eters. In t is scc i

Ren„s =— 8$ .
btraction paramet

u the subtraction
r g~ s —sthe technical simpli6cations suggested

Whe s hlag
h 6 ite-energy sum rulesIt has been propo osedthat t e ni c-

ion between an ra ectory into t a
o ion from e anne s wcalculations of the intercept

2 2
1 h h-'. d...nd.-.energy sum rule is written. A t o

ssI)+8 S~—S n S Is S
he tra ectory s o

'
ht-handsideis tobea sorbedThe6rstsumonthe g

context of
dificult to understan o s

the Introduction, we conjec uAs stateu in e
physical orig'

gn
other channe s ah 1 and trajectories.

8=
cxlsf cQcc of many
course, the assump tion that trajec orie

channels. So anotherexistence of a great number o c ann



{"RQSS I N G-S YM M ET R I C R ISI N G RE GGE TRA J ECTO R I ES

%hether this is sensible depends on whether or not
this sum is approximately independent of s over a
moderate energy range. This, in turn, depends on the
slopes of thc external trajectories and the couplings of
the resulting channels into u(s), which are here repre-
sented as g„'.

If this conjecture is correct, then this model of
inanitely many small boosts of n(s) through many
channels bears a striking resemblance to considering
only one other channel, say, the quark-antiquark
channel, with a potential in that channel which gives
rising trajectories, such as a harmonic-oscillator po-
te'.tial. In this sense, one may possibly think of quarks
as a lumping together of RQ the higher-mass channels.
Channels with thresholds before or in the neighborhood
of s, on the other hand, must always be included
explicitly.

%hethcr we think of the many-channel or the quark-
antiquark boost, both pictures suggest that the "force"
which causes trajectories to rise is not to be looked for
in the exchange of the top trajectory.

In principle, this model of rising trajectories may be
tested in the framework of the equations of Sec. II.
However, in practice, even the two-channel or two-
trajectory models are almost prohibitively difhcult to
solve. The imaginary and real parts of the Regge
functions RI'c so lntclI'clRtcd by uIlltRllty that Rt 61st
sight one seems forced to use the dispersion relations for
the trajectory functions in order to learn anything
about them at all. The problem, then, is to learn. how
to disentangle or suppress those aspects of the equations
in Sec. II that force on us the chore of solving integral
equations. In essence, we wish to approximate the
analytic approach of solving dispersion relations by a
more algebraic scheme. In the scheme we outline below,
there is hope for solving the many —two-body channel
problem, and thus some hope for understanding the
subtraction parameters.

The change necessary in the equations of Sec. II to
avoid the dispersion-relation approach is simply to take
S large enough. The order-of-magnitude relations of
Sec. III are changed, arid we And that terms containing
ImP in the unitarity relations can be neglected. The
resulting sum rule, which we call the "unitarity" sum
rule, is derived and discussed in detail iu Ref. 7.

In the resonance approximation, the unitarity sum
rule relates the coupling of the s-channel Regge pole
to any one of the s channels to all of the crossed-channel
resonance parameters, including the couplings to Rll the
crossed channels. The weighting of the channels (phase
space) is strongly dependent on the value of s at which
new channels appear. Since the external particles also
lie on Regge trajectories, the consistency requirements
between external towers of channels and trajectories
of bound states should lead to restrictions of the sub-
traction parameters for the trajectories involved. %C
conjecture that this set of algebraic equations deter-
mines the Regge parameters.

The technical simpliacation suggested by the results
of Sec. III is that straight-line trajectories are excellent
erst approximations. However, there are two difhculties
which are common to this type of calculation. (a) If
we keep -E Axed as the range of s increases into its
asymptotic region, then the narrow-width-, resonance
model is not consistent with Regge behavior. " (b) If
we learn how to let X-+~ as s —+ so as to circumvent
the theorem in Ref. 1I, then it appears likely that lower
trajectories make major contributions to ImA. "Thus
it would be necessary to calculate the lower trajectories
simultaneously. Whether the intrinsic error caused by
variations in S prevents us from calculating the lower
trajectories is not yet clear."

"J.E. Mandula and R. C. Slansky, Phys. Rev. Letters 20,
1402 ($68).
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